

RESEARCH Open Access

Breast cancer risk in relation to occupations with exposure to carcinogens and endocrine disruptors: a Canadian case–control study

James T Brophy^{1,2*}, Margaret M Keith^{1,2}, Andrew Watterson¹, Robert Park³, Michael Gilbertson¹, Eleanor Maticka-Tyndale², Matthias Beck⁴, Hakam Abu-Zahra⁵, Kenneth Schneider⁵, Abraham Reinhartz⁶, Robert DeMatteo⁶ and Isaac Luginaah⁷

Abstract

Background: Endocrine disrupting chemicals and carcinogens, some of which may not yet have been classified as such, are present in many occupational environments and could increase breast cancer risk. Prior research has identified associations with breast cancer and work in agricultural and industrial settings. The purpose of this study was to further characterize possible links between breast cancer risk and occupation, particularly in farming and manufacturing, as well as to examine the impacts of early agricultural exposures, and exposure effects that are specific to the endocrine receptor status of tumours.

Methods: 1005 breast cancer cases referred by a regional cancer center and 1146 randomly-selected community controls provided detailed data including occupational and reproductive histories. All reported jobs were industry- and occupation-coded for the construction of cumulative exposure metrics representing likely exposure to carcinogens and endocrine disruptors. In a frequency-matched case-control design, exposure effects were estimated using conditional logistic regression.

Results: Across all sectors, women in jobs with potentially high exposures to carcinogens and endocrine disruptors had elevated breast cancer risk (OR = 1.42; 95% CI, 1.18-1.73, for 10 years exposure duration). Specific sectors with

STATE OF THE EVIDENCE:

THE CONNECTION BETWEEN BREAST CANCEL AND THE ENVIRONMENT

by Janet Grey, Ph.D.

Sinch Galdon Date

FROM SCIENCE TO ACTION

by Janet Nudelman, M.A., and Connie Engel, Ph.D.

216 mammary carcinogens

1.2-Dibromoethane

1,2-Propylene oxide

1.3-Butadiene

1,4-Dioxane

2,2-Bis(bromomethyl)-1,3-

propanediol

2,3-Dibromo-1-Propanol

2,4-Diaminotoluene

2.4-Dinitrotoluene

2-Chloroacetophenone

2-Methylaziridine

4,4-Methylene-bis(2-

chloroaniline)

5-Nitroacenaphthene

Acrylamide Acrylonitrile

AF-2 (2-(2-furyl)-3-(5-nitro-2-

furyl) acrylamide)

Benzene Chloroprene Ethylene oxide

Glycidol

Hydrazine

Hydrazobenzene

Indium phosphide

Nitrobenzene Nitromethane

N-Nitroso-di-n-butylamine

O-N-Nitrotoluene

O-A-Amino azotoluene

O-T-Toluidine

Perfluorooctanoic acid

Propane sultone

Styrene

Toluene diisocyanate

mixtures. Urethane Vinyl chloride

Vinyl fluoride

Vinylidene chloride

Chlorinated solvents (n = 6)

1,1-Dichloroethane

1.2-Dichloroethane

1,2,3-Trichloropropane

1,2-Dichloropropane

Carbon tetrachloride

Methylene chloride

Products of combustion (n = 18)

1,3-Dinitropyrene

1,8-Dinitropyrene

1-Nitropyrene

2-Aminoanthracene

2-Nitrofluorene

3-Amino-1-methyl-5hpyrido[4,3-b] indole

3-Methylcholanthrene

4-Nitropyrene

6-Nitrochrysene

7,12-

Dimethylbenz[a]anthracene

Benzo[a]pyrene

Dibenz[a,h]anthracene

Dibenzo[def,p]chrysene

Isoprene MeIQ.

PhIP

Trp-P-2 acetate

Pesticides (n = 10)

1,2-Dibromo-3-chloropropane

Atrazine. Captafol

Chlordane

Clonitralid

Dichlorvos

Fenvalerate

Nifurthiazole

Simazine

Sulfallate

Dyes (n = 18)

2.4-Diaminoanisole sulfate

3,3-Dichlorobenzidine

3,3-Dimethoxybenzidine

3,3-Dimethylbenzidine 4,4-Methylene-bis(2-

methylaniline)

4-Aminobiphenyl

5-Nitro-o-anisidine

Amsonic acid

Benzidine

C.I. Acid Red 114

C.I. Basic Red 9

monohydrochloride

C.I. Direct Black 38

FD&C Violet No. 1

Guinea green B HC Yellow no. 3

Leucomalachite green

Malachite green

N,N-Diacetylbenzidine

Radiation and drinking water disinfection (n = 5)

Magnetic fields

MX (3-Chloro-4-

(dichloromethyl)-5- hydroxy-

2(5h)-furanone)

Neutrons

Radionuclide hydrogen-3

X-rays, gamma rays (ionizing radiation)

Pharmaceuticals (n = 47)

1-(2-Hydroxyethyl)-3-[(5nitrofurfurylidene)amino]- 2-

imidazolidinone

1,2-Dimethyl-5-nitroimidazole

...cont.

1-[(5-Nitrofurfurylidene)amino]-2imidazolidinone 2-Amino-5-(5-nitro-2-furyl)-1.3.4-oxadiazole 2-Amino-5-(5-nitro-2-furyl)-1.3.4-thiadiazole 2-Amino-5-nitrothiazole 4,4-Sulfonylbisacetanilide 4-Methyl-1-[(5nitrofurfurylidene) amino]-2imidazolidinone 5-(Morpholinomethyl)-3- [(5nitrofurfurylidene)-amino]-2oxazolidinone-I form 5-Azacytidine Acronycine Doxorubicin (Adriamycin) Amsacrine Anti-(+/-)-trans-7,8,9,10tetrahydrobenzo[a]pyrene-7,8-Diol-9,10-epoxide Bemitradine

Chloroambucil

Cytembena

Dacarbazine

Daunomycin

Dibromomannitol

Cyclophosphamide

Thiotepa

Furosemide Griseofulvin Hexamethylmelamine Indomethacin Isoniazid Isonicotinic acid vanillylidenehydrazide Isophosphamide L-5-Morpholinomethyl-3-[(5nitrofurfurylidene)amino 1-2oxazolidinone HCL Merphalan Metronidazole Mitomycin-C Nithiazide N.N-Dimethylnitrosourea N-[4-(5-nitro-2-furyl)-2thiazolyl]acetamide Niridazole Nitrofurantoin Nitrofurazone Norlestrin Phenacetin. Phenesterin Procarbazine hydrochloride Reserpine SQ 18506

trans-2-[(Dimethylamino)methylimino] -5-[2-(5-nitro-2-furyl)vinyl]-1,3,4-oxadiazole Uracil mustard Hormones (n = 17)17-Hydroxyprogesterone caproate Chlormadinone acetate Conjugated estrogens Diethylstilbestrol Estradiol-17Estriol Estrone Ethinyle stradiol Ethynodial diacetate Lynestrenol Medroxyprogesterone acetate Megestrol acetate Mestranol Norethisterone Norethynodrel Progesterone Testosterone Natural products (n = 5) Bracken fern (and its extracted chemicals) Carboxymethylnitrosourea

Methyleugenol

Ochratoxin ASilent Spring Institute, 2007

2-Acetylaminofluorene 2-Aminofluorene 3,2-Dimethyl-4-aminobiphenyl 4-(5-Nitro-2-furyl)thiazole 4-Bis(2-Hydroxyethyl)amino-2-(5-nitro-2thienyl)quinazoline 4-Hydroxyaminoquinoline 1oxide hydrochloride Ethyl methanesulfonate N-(4-(5-Nitro-2-furyl)-2thiazolyl) formamide N-(9-Oxo-2fluorenyl)acetamide N,N-Diethyl-n-nitrosourea N-N-Butyl-n-Nitrosourea N-Nitroso-n-ethylurea N-Nitroso-n-methylurea Vinyl carbamate epoxide Unclassified (likely research chemicals) (n = 39) (NC6)-(Methylnitroso)adenosine 1-(2-Hydroxyethyl)-1nitrosourea

Wood dust methanol extract

1-Amyl-1-nitrosourea

Research chemicals (n = 15)

Gaps in Breast Cancer Research

- Occupation/Environment
- Endocrine Disrupting Chemicals
- Mixtures
- Cumulative effects
- Periods of vulnerability

Occupational Histories of Cancer Patients in a Canadian Cancer Treatment Center and the

Generated Hypland Farming

JAMES T. BROPHY, MARGAR ETHAN LAUKKANEN, MD, DE ABRAHAM REINHARTZ, MD,

Occupational exposures increase car sor Regional Cancer Centre in Wind first Canadian cancer treatment center histories of its patients, which were reputer-based questionnaire. Breast can the largest respondent group. The I histories of 299 women with newly dicers were compared with those of 23 cancers. Odds ratios (ORs) were calculated regression, adjusting for age, social of The OR for women ≤ 55 years of ag who had ever farmed, compared with age with other cancers, was 9.05 (9)

Occupation and Breast Cancer

A Canadian Case-Control Study

JAMES T. BROPHY, a,b,c MARGARET M. KEITH, a,b,c KEVIN M. GOREY, SAAC LUGINAAH, ETHAN LAUKKANEN, DEBORAH HELLYER, ABRAHAM REINHARTZ, ANDREW WATTERSON, HAKAM ABU-ZAHRA, ELEANOR MATICKA-TYNDALE, KENNETH SCHNEIDER, MATTHIAS BECK, AND MICHAEL GILBERTSON

a Occupational Health Clinics for Ontario Workers (OHCOW), Canada

ABSTRACT: A local collaborative process was launched in Windsor, Ontario, Canada to explore the role of occupation as a risk factor for cancer. An initial hypothesis-generating study found an increased risk for breast cancer among women aged 55 years or younger who had ever worked in farming. On the basis of this result, a 2-year case-control study was undertaken to evaluate the lifetime occupational histories of women with breast cancer. The results indicate that women with breast cancer were nearly three times more likely to have worked in agriculture when compared to the controls (OR = 2.80 (95% Cl, 1.6-4.8)). The risk for those who

bUniversity of Stirling, UK

CUniversity of Windsor, Canada

d University of Western Ontario, Canada

ePrince Edward Island Cancer Treatment Centre, Canada

J Windsor Regional Hospital, Canada

⁸ University of York, UK

Lifetime Histories BREAST CANCER Research Study

IF YOU HAVE RECENTLY BEEN
DIAGNOSED WITH BREAST CANCER
YOU CAN HELP
WITH A ONE-TIME INTERVIEW

Current Study

1,006 cases

1,146 controls

Questionnaire

Non-Occupational Factors

- Reproductive factors
- Income
- Smoking
- Family history
- Etc.

Questionnaire

Occupational Factors

- All jobs
- Industry
- Occupation
- Exposure
- Vulnerability factors

Exposure Assessment

Low

Moderate

High

Non-Occupational Findings

- High postmenopausal BMI
- Less education and income
- Number of pregnancies
- Duration of child-bearing years
- Smoking

Occupational Findings

... Premenopausal

Farming Exposures (1.36)

Pesticides

- Fungicides
- Fertilizers

Diesel exhaust

Other agricultural chemicals?

Bars/Gambling Exposures (2.28)

Second-hand tobacco smoke

Night work

Other?

Metal Work Exposures (1.73)

Metals

Solvents

Metalworking fluids

Other chemicals

Food Canning Exposures (2.35)

Plastic can linings

Pesticides

Other?

Automotive Plastics Exposures (2.68)

Plastic resins

Additives

Flame retardants

- Solvents/glues/paints
- Other chemicals

What Are The Implications?

- Occupational histories
- Regulations
- Workplace compensation
- More research
- PREVENTIVE ACTION

"To wait and see, to delay in the face of good but partial evidence, is tantamount to experimenting on humans."

Contains photos taken by the presenters as well as images publicly available on the internet.